Computing local dynamics of many-body systems

Michael Sonner, Alessio Lerose, Julian Thoenniss, and Dmitry Abanin

Université de Genève, Département de Physique Théorique

Efficient simulation of large quantum systems is one of the ultimate goals of computational quantum physics. Here we will focus on the problem of time evolution of a small subsystem which is embedded in a larger system. To that end, we encapsulate the “influence” a quantum environment can have to any possible subsystem in a new object, Feynman and Vernon’s celebrated influence functional [1]. Remarkably, in many relevant cases, like strongly thermalizing or integrable systems, the influence functional can be well approximated by a matrix product state in time with relatively low bond dimension[2][3][4]. We propose an algorithm to obtain this matrix product state representation in one dimensional geometries by iteratively contracting a tensor network[5]. We then apply this approach to study transport properties of the non-integrable ising chain and majorana edgemodes in the presence of dissipation. Quantum environments which consists of free fermions allow for another avenue of obtaining their influence functional: By computing the fermionic correlation function analytically and then converting it to a matrix product state using Fishman and White’s algorithm. This opens the door to study the problem of interacting impurities embedded in a non-interacting bath.