Designing Berry curvature dipoles and the quantum nonlinear Hall effect at oxide interfaces

Edouard Lesne,1 Yildiz G. Saglam,1 Raffaele Battilomo,2 Thierry C. van Thiel,1 Ulderico Filippozzi,1 Mario Cuoco,3,4 Gary A. Steele,1 Carmine Ortix,2,4 and Andrea D. Caviglia1,5

1 Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
2 Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
3 Consiglio Nazionale delle Ricerche, CNR-SPIN, Italy
4 Dipartimento di Fisica "E. R. Caianiello", Universita di Salerno, IT-84084 Fisciano, Italy
5 Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland

Quantum materials can display physical phenomena rooted in the geometric properties of their electronic wave functions, and regulated by an emergent magnetic field known as Berry curvature [1-3]. In materials with acentric crystalline structures that do not exhibit long-range magnetic order, the appearance of the Berry curvature is often linked to electronic band structures resembling the dispersion relation of relativistic particles. However, this characteristic is also a major roadblock, as it prevents the manifestation of quantum geometric effects and correlation-induced many-body quantum phases in the same material. Here, we overcome this limitation by designing very large dipoles of Berry curvature in a correlated two-dimensional electron system. We unveil a rich interplay between quantum confinement, spin-orbit coupling and crystal fields in (111)-oriented oxide heterostructures, bringing forth the appearance of Berry curvature concentrations that we directly probe through an unconventional Hall effect arising from an external in-plane magnetic field [4, 5]. We then report the appearance of a quantum nonlinear Hall effect under time-reversal symmetric conditions [6-10] that provides a direct measure of the Berry curvature dipole. The quadratic current-voltage characteristic of the nonlinear Hall effect paves the way to rectifiers and terahertz detectors [11] by oxide interface design.