Superinsulators a new topological state of matter

Maria Cristina Diamantini,1 Carlo Trugenberger,2 and Valerii Vinokur3

1 Npis, INFN and Department of Physics and Geology, University of Perugia
2 SwissScientific Technologies
3 Terra Quantum AG

Superinsulators are dual superconductors [1]. They are correspondingly characterized by an infinite resistance, even at finite temperatures and by an electric Meissner effect. They arise in materials in which the effective electromagnetic interaction contains magnetic monopoles and have been detected [2] near the superconductor-to-insulator transition (SIT) in TiN, NbTiN, InO and NbSi films. Magnetic monopoles squeeze the electromagnetic interaction into thin electric flux tubes that cause a linear confining potential between charges so that only neutral states survive asymptotically, the same mechanism that permanently confines quarks inside hadrons. 3D superinsulators may be realized as the mysterious pseudogap state in high-T_c superconductors [3].